
Chemistry Studio : An Intelligent Tutoring System
(Natural Language Component)

Ankit Kumar
Y8088

ankitkr@iitk.ac.in

Abhishek Kar
Y8021

akar@iitk.ac.in

Sumit Gulwani
Microsoft Research, Redmond

sumitg@microsoft.com

Ashish Tiwari
SRI International

tiwari@csl.sri.com

Amey Karkare
IIT Kanpur

karkare@cse.iitk.ac.in

Abstract— We present a prototype of an expert system that can
aid students in learning Chemistry, specifically Periodic Table,
by automatically solving problems posed in natural language.
Our work involves natural language processing of the posed
questions and automatic conversion into an intermediate logical
representation. We employ a novel tree based parsing mechanism
to build a type-safe logical formula out of recognized tokens. Our
system can handle both existentially and universally quantified
queries. We also demonstrate parsing of assertion based questions
spanning multiple sentences. Finally, we come up with a number
of heuristics to make our system more robust and report the
results on a dataset of Periodic Table problems collected from
various sources. The entire system is developed in C#.

I. INTRODUCTION

In this work, we present an intelligent tutoring system aimed
at instructing students by simulating the reasoning processes
of a student aiming to solve a problem. The current state of the
art systems are static in nature and answers given by them are
based on a simple lookup in their databases. We aim to develop
a system that will take into account the knowledge base of the
student and try to emulate the inference mechanisms used by
him/her to arrive at a solution. Hence, our system aims at
solving a problem by a systematic reasoning process similar
to that employed by students while attempting the problem.

We have chosen the domain of Periodic Table problems
in Chemistry meant to be tackled by students from grades
9 through 12 for our tutoring system. The simplicity and
structured nature of the domain makes it ideal for translation
from natural language to a logical formulation and subsequent
problem solving. Our work involves natural language process-
ing of the posed problems and their conversion into a logical
representation.

Our system encapsulates a number of novel techniques for
processing the questions posed in natural language and em-
ploys heuristics to make it robust in the domain of Periodic
Table chemistry. We organize the report as follows. In the
following section, we describe the previous work in this field
and how our approach is different. Section III provides a
brief overview of the system followed by the description of
our dataset in Section IV. Next we introduce our intermediate
logic and give details of our system design in Section VI.
Section VII through XII describe special techniques used
by us to make our algoruthm robust Section XIII deals with
real world examples and how our algorithm deals with them.

Section XIV presents the results on our dataset and finally we
conclude with some ideas and directions for future research
on this topic.

II. RELATED WORK

Current similar work includes the Geoquery project at Uni-
versity of Texas, Austin [1] [2] [3] [4] wherein various
machine learning techniques and formal grammars are used
for machine translation. A Question-Answering System for
Advanced Placement chemistry dealing with problems in
stoichiometry and equillibrium reactions was developed as
part of the Halo Pilot project by Vulcan Inc. The system
uses a combination of several modern Knowledge Represen-
tation and Reasoning technologies, in particular semantically
well-defined frame systems, automatic classification methods,
reusable ontologies, and a methodology for knowledge base
construction [5]. The system provides the reasoning in reach-
ing its final answer in English as the templates are hard
coded into it. It is to be noted that this system used problems
manually encoded into the domain language of the system and
Natural Language Processing was out of scope of this project.

A number of Intelligent Tutoring Systems occur in the domain
of physics. Isaac (Novak et al) [6] and Mecho (Bundy et al) [7]
are examples of systems that attempt to parse sentences posed
in natural language and convert them into semantic frames
and logical formulae respectively. Pyrenees is an example of
a model tracing tutoring system for equation based problems
where problems were manually translated into the domain
language. A recent work by Jung et al [8] proposes using
natural language to represent knowledge in an intelligent
tutoring system. This enables instructors to easily add to
the knowledge base and even debug it. The system solves
problems in the domain of kinematics and mechanics though
it can be extended to different domains by appropriately
encoding the mental models corresponding to that domain (e.g.
concepts of group, period etc in periodic table chemistry). It
uses hypernyms from WordNet to find broad concepts and
does the parsing according to it.

We employ a much simpler approach that utilises the well-
structured properties of the problems in this domain by infer-
ring the terms in the logic from certain cues in the question.
We then propose algorithms that arrange these terms to form
a well formed logical representation of the question. We

find that with the help of appropriate ranking mechanisms
and heuristics, we can successfully extract the correct logical
representation from multiple possible arrangements of the
terms.

III. SYSTEM OVERVIEW

The entire system is comprised of two basic components -
Natural Language Processing and Problem Solving. Given a
problem posed in the natural language, it is first processed
using our proposed algorithm to convert it into an intermediate
logical representation. An intermediate language has been for-
mulated to encapsulate the breadth of the domain of Periodic
Table problems. The intermediate representation generated is
then subsequently processed by a theorem proving system that
has a database of the rules and facts that govern the domain of
periodic table. The goal of the problem solving system is not
just to solve the problem using raw facts, but to emulate the
reasoning process of a student studying the subject. Ultimately
we would like to generate problems with graded difficulties
and automatically provide hints to students stuck at a point.

Our contribution to the project is the conversion of questions
posed in natural language to the intermediate logical form.

IV. DATASET

As a preliminary to our work, we collected a number of
benchmark problems in the domain of Periodic Table com-
prising of MCQ’s, true and false questions, fill in the blank
and interrogative questions meant for students between grade
9 and 12. The sources include course textbooks, standardized
tests like SAT Chemistry, California Star Chemistry and GRE
Chemistry, and various other educational websites. The current
corpus size is around 200 questions.

These sample questions were used to identify the keywords
of the domain corresponding to which terms in the logic were
created in the form of predicates, functions and simple terms.
It also helped us to identify certain cues whose presence in a
sentence indicate the occurrence of some token in the corre-
sponding logical representation. We compile such a mapping
of cue phrases to tokens.

We encode certain rules in the system based on the problem
corpus. The evaluation metric for our translation scheme will
be the ratio of the size of the encoded rules to the size of the
problem set that the system is able to translate successfully.

All these problems were then manually converted into their
intermediate logical form to match our result against and
provide a starting base for the problem solving team. The
problem set is organised in XML form (Fig. 1) which is
the input format for our translation system.

V. INTERMEDIATE LOGIC

We interpret the logical representation of a question as the
choice of the domain variable that makes the formula true.

Fig. 1: Input XML format of the question

The domain variables are the free variables appearing in the
formula. The set of entities over which the domain variable
varies depends on the type of question (e.g. the options in an
MCQ).

For example, consider the question : “What is the atomic
number of calcium ?”. At first glance, one might be tempted
to formulate this as AtomicNumber(Ca). However, according
to our interpretation of logical representations, the correct
translation would be to Same(AtomicNumber(Ca), $1) where
$1 is the domain variable varying over the set of possible
numbers. We have decided to have such a formulation keeping
in mind the nature of the system involved in problem solving
- a theorem proving system. Here we make use of the fact
that with such an interpretations of logical representations,
the problem solving component will easily utilize a theorem
prover to test the values of the domain variables that make the
logical representation true.

The intermediate logic is comprised of terms which can be
classified into the following:

• Predicates : They can be unary, binary or ternary. These
terms take as input other terms and return a boolean value.
Some of them are enlisted in table I.

• Functions : These terms take as input other terms and
return some value which is a function of the input terms.
Some of them are enlisted in table I

• Simple terms : These are comprised of terms correspond-
ing to the elements, numbers, variables etc. which do not
have any nested term inside them. Some of the terms with
their types are enlisted in table I

We assign an input and output type to all of the above terms.
These terms can appear nested within each other such that
the output type of a nested sub-formula satisfies the input
type of the enclosing term. For example, AtomicNumber(Ca)
represents the atomic number of Calcium, AtomicNumber

Predicates Functions Simple terms (Type)
AlkaliMetal(element) AtomicNumber(element) Ca (Element)

Halogen(element) AtomicRadius(element) Li (Element)
AlkalineEarthMetal(element) IE(element) 15 (Numeric)
RareEarthElement(element) Group(element) AtomicRadiusProperty (NumericFunction)

Max(numericfunc,bool) Period(element) Increase (change)
And(bool,bool) OxidationState(element) Stays Same(change)
Or(bool,bool) IonicRadius(element) Up (movement)

Same(num,num) ElectronAffinity(element) Left down (movement)
Order(numericfunc,change,set) Conductance(element) $0 (variable)

Trend(movement,numericfunc,change) Reactivity(element) $1 (variable)

TABLE I: Terms in the intermediate logical representation

being a unary function that takes a simple term of type element
(here Ca) and returns the Atomic number which is of type
numeric. Order(AtomicNumberProperty, increase, {Li,Be, H})
represents a boolean formula which returns true if the set of
elements Li, Be, H are in increasing order of their atomic
numbers. Here, Order is a ternary predicate that takes 3
elements - a simple term of type numeric function, a simple
term of type change and a simple term of type set which is
an ordered set of simple terms of type element.

The logical formulation of predicates Max() and Min() are
worth discussion. Max and Min require a function that
they maximize/minimize and a domain over which the in-
put function needs to be maximized/minimized. This do-
main type is modeled by any sub-formula of type boolean.
This has been made possible because of the fact that ac-
cording to our interpretation of formulae, a sub-formula is
interpreted as all the values for the domain variable that
make this sub-formula true, hence any sub-formulae of re-
turn type boolean can model a domain type. For example,
Max(IEProperty,Same(Group($1),12)) restricts the maximiza-
tion of the ionization energy property to the domain of
all elements satisfying the formula Same(Group($1),12) i.e.
elements belonging to Group 12 of the periodic table.

VI. SYSTEM DESIGN

The process of translation of the question to its intermediate
logical representation is done in three steps as illustrated by
Fig. 2. First comes the lexer that chunks the input problem
and identifies the various terms in the logic appearing in the
question. Then comes the parsing of the options provided in
Multiple Choice Questions that provides additional insight into
the problem as we will describe shortly. The final phase is the
parser that tries to arrange the identified set of terms into a
type-safe logical formula.

A. Lexer

The algorithm employed by the lexer is elucidated in Algo-
rithm 1. At any point of time, we loop through the list of cue
phrases and try to find the best matching cue with some prefix
of the input sentence. If we are successful, we chop off the
corresponding portion and loop again. Otherwise, we remove

Fig. 2: Stages involved in translation

Algorithm 1 Lexer Algorithm
Require: S : Problem Sentence, M : Directory mapping cue phrases

to tokens, Returns L : list of identified tokens
1: while S.Length != 0 do
2: for cue phrase C in M do
3: Find if some prefix of S matches with C
4: end for
5: if some match is found then
6: Choose the match with highest confidence, add corre-

sponding token to L and chop off the prefix from S
7: else
8: Chop off 1 word from beginning of S
9: end if

10: end while
11: return L

the first word from the sentence, deeming it extraneous. This
process is continued till the whole sentence is consumed.

Note that these cue phrases can appear in the sentence in any
of their derivative forms like -ing, -es, -ed etc. This problem
can be dealt with using stemming. However, currently we
are using a variation of the Levenshtein edit distance [9]
to compute a normalized similarity index between the two
strings. This also helps us in dealing with the misspelt words.
We define the similarity score between two strings S1 and S2

to be equal to 1 − LD(S1, S2)/Max(S1.length, S2.length).
Where LD(S1, S2) represents the Levenshtein edit distance

between the two strings.

The lexer also collects certain metadata corresponding to each
identified token. This includes the position information of the
corresponding cue phrase in the sentence. The Levenshtein
edit distance similarity score is also stored as a confidence
measure (to be used in further phases).

B. Parsing options in MCQ

In this module, we try to extract information about the final
result required by the question by parsing the options of a
Multiple Choice Question. For example, if all the options are
elements, we can infer that the result variable in the formula
should be of type element. Similarly, if we find that an option
contain an ordering of elements (e.g. Be < B < Li), we can
infer that the question requires the Order predicate with an
increases parameter and an ordered set consisting of {Be ,B
,Li} as per specifications of the Order predicate. Effectively,
this step not only helps us in inferring the type of the final
result variable in the logical formula but also insert certain
implicit tokens in the question (Order in the above case). It
also aids in deciding the number of domain variables to be
introduced.

Example: Which set of elements contains a metalloid?
a)Ca, H, Li b)N, O, P c)As, Mo, U d)Xe, Ar, Kr
Formula: Or(Metalloid($1), Or(Metalloid($2), Metalloid ($3)))

Here, the parsing of the options gave us the insight of adding
three domain variables to the list of tokens which get arranged
in type-safe manner in parsing phase.

An option of numeric type in an MCQ helps us in tier 2 of the
parser as described in the next section. In case of True/False
questions, we allow for the introduction of the Implies(Hole)
token as we describe in the section dealing with Forall queries.

C. Parser

As described previously, the logical representation of an input
sentence is comprised of terms appearing inside one another in
a nested form where the output type of the nested term (or the
nested sub - formula) satisfies the input type of the enclosing
term. Such an arrangement of terms can be viewed as a tree
structure where each node represents a term with its children
subtrees representing the nested sub-formulae. We call such
a tree the representation tree of the logical formula. The
internal nodes represent the predicates/functions that accept
other terms as their input (children). The leaves correspond to
the simple terms that take no further input tokens.

The parser takes the list of identified terms from the lexer and
creates nodes corresponding to them. For each identified term,
it creates a node whose children are unassigned at the moment
and we call these unassigned nodes as holes. In totality, the
job of the parser is to fill these holes with other subtrees in
a type safe manner such that the final tree generated has no
hole. Such a generated tree with no hole represents a logical

formula. Please note that corresponding to a set of input terms,
there might be multiple ways of type-safe arrangement of the
corresponding nodes. This calls for a ranking scheme that will
be used to find the most likely representation tree for a problem
sentence.

A partial representation tree is one in which all nodes are not
assigned i.e. containing some holes. Simple tokens are partial
representation trees wherein only one (the root) is assigned.
For example, simple token corresponding to the AtomicRadius
predicate will be AtomicRadius(Hole). A compound token is
formed by arranging some partial tokens in type-safe manner
to form a partial representation tree.

The parser is divided into two tiers. The first tier is used to
construct compound tokens from simple tokens in order to
exploit the local structure of the input sentence. The second tier
takes the compound tokens from first tier and assembles them
in type-safe manner to generate all possible representation
trees. It then uses a ranking scheme to identify the most likely
representation for the input problem sentence.

1) Tier 1: In our initial design, we only had the type-safe
assembling of the simple tokens. However, we found that such
a scheme resulted in construction of number of extraneous
formulae.

Example: Which element is in Group 3 and period 2?
Formulae if only tier 2:
And(Same(Group($1) , 3), Same(Period($1), 2))
And(Same(Period($1) , 3), Same(Group($1), 2))

We noticed that this could be avoided by utilizing the local
structure in the sentence to from some compound tokens from
the simple ones before arranging them in tier 2. The position
metadata collected by the lexer was used in formation of
compound tokens.

Some of the ways in which the local structure of the problem
has been exploited are listed below :

• Association of numbers with numeric predicates based
on proximity : For every number encountered in the
input sentence, we associate it with the different numeric
functions discovered in the sentence with confidences
proportional to their proximity scores. For example, in the
previous case, the most likely predicate associated with
3 would be Group and the 2 would be Period. Thus we
generate the compound tokens Same(Group(Hole),3) and
Same(Period(Hole),2) in tier 1 to reflect this structure.

• Association of equality predicate with a numeric function
based on proximity: If we encounter a phrase that calls for
checking equality of two numeric functions, we generate
a compound token to reflect this sub-structure.
Example: Which of the following are in the same group
as Oxygen?
Formula: Same(Group($1), Group(O))
In the above example, we generate the compound to-
ken Same(Group(Hole),Group(Hole)) based on the phrase
same group.

Fig. 3: Steps involved during construction of representation tree

• Identification of certain terms which generally occur
coupled with other terms: In some cases, appearance of
a term in the problem sentence calls for the introduction
of certain other terms that frequently occur together and
its occurrence in the sentence may not be explicit.
Example: As atoms of elements in Group 16 are consid-
ered in order from top to bottom, the electronegativity of
each successive element:
1) Increases 2) Decreases 3) Remains the same 4) Can’t
say
Formula : Trend(down, Electronegativity, $1)
In this example, we infer the presence of the Trend
predicate from the occurence of the term down as they
usually appear together in sentences.

As evident from the last example, the tier not only formulates
compound tokens, but also inserts certain tokens implicit in
the question.

2) Tier 2: We develop an algorithm that takes as input a set of
sub-expressions in the logic, and constructs another expression
that ideally uses all of those sub-expressions. The number of
such expressions can be more than one. For developing this
algorithm, we exploit the types associated with various sub-
expressions.

This tier takes the compound as well as simple tokens from
tier 1 and tries to assemble them in a type- safe manner to
form a well-formed representation tree. There could be two
approaches to do this - the top down approach and the bottom
up approach. In the top down approach, at any step we have a
partial representation tree with holes to be filled and we take
a decision of which hole to fill and which token to fill it with.
After taking each such decision, we branch out a recursion
path with that decision at that point. Effectively, this is a
systematic exploration of the search space. In the bottom up
approach, we start with the terminal tokens (leaves) and try to

group them at each step to form bigger partial representation
trees, effectively providing us with a list of group of partial
representation trees. The top down approach provides better
control over each partial representation tree as in a recursion
path, we have only a single representation tree to deal with
which makes it easier to employ various heuristics and ranking
schemes in our algorithm. This is why our algorithm is in a
top down manner in which at each execution step, we fill the
leftmost hole in the partial tree.

Algorithm: We use a top down recursive algorithm to fit all
tokens in a type-safe manner. The algorithm is elucidated in
Figure 2

The algorithm starts with unused tokens and all tokens set to
all compound and simple tokens obtained from tier 1. The
initial partial tree with which the algorithm starts up is Hole
of the type boolean (in agreement with our interpretation of
logical representations). Every call of the function Type-Safe
takes as input a list of unused tokens, a global list of all tokens
and the partial tree formed till now by a particular decision
path. The decision path refers to the sequence of hole-filling
decisions taken which has resulted in the current partial tree. If
the confidence of the partial tree becomes less than a threshold
value we discard this decision pathway and return. Otherwise,
there can be two situations.

• The current partial tree has no holes left. This can have
two implications : either we have successfully completed
the construction of the representation tree or we have
assembled a complete subtree of the full representation
tree. To handle the first case, we add this completed tree
to the global list of full representation trees. We penalize
the confidence of this tree in proportion to the count
of unused tokens. To handle the second case, we make
use of an important observation. As explained previously,
we started the construction of the tree with a hole of

Algorithm 2 Type-Safe Arrangement Algorithm
Require: unused tokens, partial tree, all tokens

1: if partial tree.confidence < threshold then return
2: end if
3: if partial tree has no holes then
4: Add this tree to the global list of completed trees with

confidence decreased in proportion to number of tokens unused.
5: if there are unused tokens then
6: Create a new tree with “And” as the root and the current

partial tree as its left child with a hole as the right child
7: typeSafe(unused tokens, new tree, all tokens)
8: end if
9: else

10: if no unused tokens left then
11: for token t in all tokens do
12: if t can fill hole of partial tree then
13: Newtree = holefill(partial tree, t)
14: Newtree.confidence = oldtree.confidence * penal-

ization factor
15: Type-safe(unused tokens, new tree, all tokens)
16: end if
17: end for
18: end if
19: if there are unused tokens left then
20: for token t in unusedTokens do
21: if t can fill hole of partial tree then
22: new tree = holefill(partial tree, t)
23: Type-safe(unused tokens \ {t}, new tree, all to-

kens)
24: end if
25: end for
26: if none of the tokens are able to satisfy the hole then
27: for token t in all tokens \ unused tokens do
28: if t can fill hole of partial tree then
29: new tree = holefill(partial tree, t)
30: new tree.confidence = old tree.confidence *

penalization factor
31: Type-safe(unused tokens, new tree, all tokens)
32: end if
33: end for
34: end if
35: end if
36: end if

return type boolean. This implies that the current tree
formed would have appeared in the full representation
tree in conjunction with some other subtree which could
have been assembled from the currently unused tokens.
We found that happens in cases in which there is an
implicit conjunction/disjunction in the problem sentence.
We handle this case by creating a new tree with its root
as And() / Or() predicates with the current completed tree
as its left child.
Example : Which element in period 3 is a gas at STP?
Formula : And(Same(Period($1), 3), IsGasAtSTP($1))
Explanation : Note that there is no explicit cue for an
And() predicate in the problem sentence. As a result,
the lexer fails to guess its presence. During the course
of the algorithm, at some stage we form a complete
tree as Same(Period($1), 3) with {IsGasAtSTP, $1} as
unused tokens. As explained above, we add an And()

predicate thus forming a partial representation tree of
the form And(Same(Period($1), 3), Hole). This hole is
subsequently filled by the remaining unused tokens in
type-safe format resulting in the final formula given
above.

• The current partial tree has holes. In this we might
encounter one of the two scenarios.

– We have exhausted the list of unused tokens. This
might happen when a token appears more than once
in the full representation tree but is detected by the
lexer just once due to occurence of a single cue. We
handle this by reproducing tokens from the list of
all tokens one by one. If a token is reproduced that
can fill the hole, we reduce the confidence of the
new tree generated by a penalization factor and then
recurse.
Example : Which if the following elements have the
maximum atomic radius and metallic character ?
Formula : And(Max(AtomicRadiusProperty, $1),
Max(MetallicCharacter, $1))
Explanation : The lexer recognizes the ‘maximum’
cue just once in the question and produces the Max()
predicate just once. On the other hand, our logical
formula requires two Max() predicates to form a
valid logical formula. The above heuristic of ours
solves this problem.

– We have a list of unused tokens from which we have
to find a token that correctly fills the hole in our
partial tree. We do this by iterating over all the tokens
in the unused tokens list and trying to fit them into
the hole. For every such token found, we fill the hole
with the token and recurse. In case no token was able
to fill the hole in the tree we try to fill the hole with
one of the previously used tokens in the tree. This
list is obtained by taking the set difference of all
tokens and unused tokens. If such a token is found,
we fill the hole and recurse with the confidence of
the new tree decreased by a penalization factor.

After all recursion branches return, the global list of completed
trees will contain all the trees generated with their confidences.
We pick the tree with the highest confidence and report is as
the correct representation tree of the problem sentence. The
output of our system is represented in XML format which is
shown in Figure 4. We define tags corresponding to each of
the terms in the logic and the XML output is produced by
outputting appropriate tags during pre-order traversal of the
completed tree.

Special Techniques: We employ certain techniques and heuris-
tics during the course of the algorithm to remove extraneous
results. We describe two of them below.

• Permutation Removal: Our logical representation con-
tains many symmetrical terms i.e. terms with multi-
ple inputs of the same type. For example, Same(...,
...) takes as input two numeric type sub-formula.

Fig. 4: Output of our algorithm in XML form

In such cases, we observed that the algorithm pro-
duced semantically equivalent completed trees whose
textual representations were permutations of each
other. For example Same(Group($1),Group(Li)) and
Same(Group(Li),Group($1)) are permutations of each
other and are semantically equivalent. Let’s see how both
of these were generated by the algorithm from the same
query.
The second tier of the parser received the
following tokens from the previous stages - i)
Same(Group(Hole),Group(Hole)) ii) $1 iii) Li. Consider
the execution step where the current partial tree is
Same(Group(Hole),Group(Hole)) and the unused tokens
are {$1,Li}. As both of these are of type element and
thus capable of filling the first hole, there will be two
recursive calls - one where the hole is filled with $1 and
the other where the hole is filled with Li. The former
return the first formula and the latter returns the second
formula.
In order to avoid this phenomenon, we use a permutation
removal algorithm. We define the value of a subtree to
be its textual representation (its pre-order traversal). We
enforce the following constraint at each internal node of
the tree created:
Constraint: At each internal node of a representation
tree, all its children with the same type should be ordered
in the lexicographic order of their values.
We maintain this invariant at every execution step of the
algorithm by checking for satisfaction of the constraint
along the path from the parent of the hole being filled to
the root. If any node in this path violates this constraint,
we discard this recursion path. Note that we define the
value of a hole to be a character whose lexicographic

value is infinity.

• Variable Branch Removal: We employ a heuristic that
helps us in pruning some generated trees that, though
well-formed, are semantically meaningless from the point
of view of a question.
Example: Which element is in the same group as Lithium
and same period as Barium?
Formula: And(Same(Group($1),Group(Li)),
Same(Period($1),Period(Ba)))
Extraneous formula: And(Same(Group(Ba),Group(Li)),
Same(Period($1),Period(Ba)))
Explanation: Note that the extraneous formula
is type consistent. However, the subtree
Same(Group(Ba),Group(Li)) does not contain any
variable terms and hence has a constant value irrespective
of the value taken by the domain variable. Hence, this
formula is meaningless from the point of view of the
question and is hence, discarded.
Such examples call for the following heuristic:
Heuristic: At least one of the children subtree of every
Same() node in a tree should have at variable in it. All
children subtrees of every And() and Implies() node in a
tree should have a variable in it.

VII. AUTOMATIC INTRODUCTION OF FREE VARIABLES

We observed that our algorithm suffered in questions where
implicit introduction of free variables was needed in order to
formulate a valid logical formula. Common examples include
the questions involving quantifiers as well as assertion based
questions.

Example: Alkali metals belong to group 1 of the periodic table.

In the above example, we need to infer that there is an
implicit variable (say $1)that needs to be checked whether it
belongs to group 1 and then be quantified over the domain
of all alkali metals. Note that there is no cue phrase in the
question to suggest the introduction of such a variable and
our algorithm would, in this case, fail to fill up the hole
corresponding to this token. Note that this kind of a situation
arises in True/False based questions as even the options
dont provide us with a cue that a variable token of type
elem is required. We use an intelligent guessing technique to
introduce such implicit variables during the parsing phase of
our algorithm.

Note that In case of the absence of this variable token, we run
into a roadblock during the course of our parsing algorithm.
The situation can be either of the following:

• There are holes (requiring a token of type elem) in the
representation tree and tokens available in the unused
tokens list but none of the tokens is able to satisfy this
hole even after replication.

• There are holes (requiring a token of type elem) in the

representation tree and no tokens are available in the
unused tokens list and none of the original tokens when
replicated satisfy this hole.

In both these cases, we introduce a new handcrafted variable
token of type elem and fill the hole with it. This enables
the algorithm to proceed forward and build the required
represention tree. The introduction of variables in case of
assertion based questions is discussed in section IX-B

VIII. HANDLING QUANTIFIED STATEMENTS

We encounter many problems that involve quantifiers in their
logical representations. As expected, we encounter two types
of quantification - universal quantification over all members of
a domain and the existential quantification with some property
satisfaction.

• Universal quantification : Usually the problems of interest
involve checking the satisfiability of a predicate/property
for all elements of a domain. The domain is often
modelled as the set of elements satisfying some other
predicate/property. Consequently, this gives us the gen-
eral template for a basic Forall quantification scheme :
∀xA(x)→ B(x) where A(x) and B(x) are sub-formulae
of type boolean that according to our previous discussion
in section V, successfully capture the notion of domain.
This allows us to focus on this template only and ignore
the other templates like ∀x,A(x) ∧ B(x) which are not
of interest.

• Existential quantification : In this case, the problems of
interest involve the checking the existence of an element
of the domain under consideration which satisfies certain
property. As said previously, both the domain as well
as the property under consideration is captured well
by sub expressions of boolean type. This also gives
us the template for existentially quantified statements :
∃x,A(x) ∧ B(x) where A(x) corresponds to the sub-
formula capturing the domain while B(x) captures the
property under consideration.

Our handling of quantifications has the following assumptions:

• All quantification based queries quantify over only one
variable

• There is no nesting of universal and existential quantifiers

These assumptions have been made after studying the exam-
ples in the dataset and extend well to real world problems in
this domain.

An important problem encountered was the guessing of the
quantification type involved in such questions. In certain cases,
the occurences of direct cue-phrases like “all”, “exists” helped
in determining the nature of quantification involved. However,
in some cases, such direct cues were not present. To handle
this, we first make the following observation :

Observation : The truth value ∀x,A(x) → B(x) and
∃x,A(x) ∧ B(x) can differ only if the cardinality of the set

of elements satisfying the domain predicate A(x) is not unity.

We found from our dataset that im most questions of this
case, the domain gets satisfied by a single element and in
that case, any of the quantifications will yield the same truth
value. For questions with diferrent number of elements in the
domain, we favoured the formation of Forall quantification
over existential as we observed that existential queries usually
had an occurence of a cue phrase in them.

We now discuss handling of forall quantification. The discus-
sion for existential quantification is similar.

A. Universal Quantification

As mentioned, our template for handling universal quantifi-
cation is ∀x,A(x) → B(x). Corresponding to this tem-
plate, we define the logical representation in our logic as
Forall(quantified variable, Boolean sub-formula)

Example: Alkali elements show metallic character.
a) True b) False

The Forall predicate takes as its arguments the variable being
quantified and a boolean formula that has to be satisfied by that
variable. The correct translation of the above example would
be:

Forall($1,AlkaliMetal($1) =⇒ Metallic($1))

Handling Forall requires answering of two questions :

• Position of implication.
• Identification of domain (antecedent) and property

(consequent) predicates.

We observed that the position of the implication sign normally
occurs at the position corresponding to the verb in the
sentence. In the above example the verb “show” demarcates
the antecedent and the consequent in the implication. In order
to find the verb in the sentence we used the Part of Speech
tagger in the Stanford CoreNLP [10] package. The details of
the integration of the package into our system is given in a
Section XI.

Once we have the position of the implication, we need to de-
cide on its direction. For example, Forall($1,Metallic($1) =⇒
AlkaliMetal($1)) would be a wrong translation for the given
question. We are also faced with the problem of reporting
the same questions in active as well as passive voice which
though, look different to the parser, have the same logical
representation. The question

Example: Metallic character is shown by alkali metals.

has the same translation as the first example but is in passive
voice. Hence, to resolve the antecedent and consequent we
use the following strategy which is based on the observations
made from the dataset:

The voice of the question was again determined by the
Stanford CoreNLP package. However, note that this algorithm

Algorithm 3 Forall resolution Algorithm
1: A(x) = Subtree with predicates having cover to the left of the

verb
2: B(x) = Subtree with predicates having cover to the right of the

verb
3: if Sentence is in Active Voice then
4: Construct implication in direction A(x) =⇒ B(x)
5: else
6: Construct implication in direction B(x) =⇒ A(x)
7: end if

is still not bulletproof as shown in the following example :

Example: Group 1 elements are called alkali metals.

Logical representation :
ForAll($1, Implies(Same(1,Group($1)), AlkaliMetal($1)))

In this question, our algorithm incor-
rectly reports the logical representation as
ForAll($1,Implies(AlkaliMetal($1),Same(1,Group($1)))).
However, we find that such examples are rare.

IX. ASSERTION BASED QUESTIONS

In the domain of periodic table chemistry, we come across
a number of questions that assert facts about a particular
entity in a couple of statements statements and then finally
ask a question about some other fact/property of the same.
Such questions normally span multiple sentences and involve
quantification over the variables introduced. This category of
problems make use of our automatic introduction of variables.
However, the variables introduced over the different sentences,
mostly, refer to each other and hence these questions typically
present us with the problem of anaphora/coreference resolu-
tion.

A. Anaphora Resolution

Anaphora resolution refers to the problem of resolving what
a pronoun or a noun phrase refers to in a particular sentence.
Consider the following example:

Example: An element A forms covalent bond with oxygen. It
has high electronegativity and belongs to group 13. What is
its atomic number?

In the above example, the pronouns “it” in sentence 2 and
“its” in sentence 3 refer to “element A” introduced in the first
sentence. This is a well studied problem in Natural Language
Processing and different methods appear in literature for
solving this problem. We use the anaphora resolution system
bundled with the Stanford CoreNLP package that implements
the deterministic multi-pass sieve coreference resolution sys-
tem [11] [12]. The tool returns a coreference graph giving
the dependencies between the pronouns and the entities they
refer to. The output for the above example would be:

Output: Coreference Resolution Graph

• sentence 1, word 2

• sentence 2, word 1
• sentence 3, word 3

B. Handling Multiple Sentences

In questions spanning multiple sentences, we first hypothesize
that each statement is complete in itself, i.e. each statement
corresponds to a logical formula of its own. These questions
typically assert facts about some element(s) or property(s) in
the initial statements and pose a question in the last statement.
The last example illustrates this fact where facts are asserted
about the “element A” and we are finally asked to find its
atomic number. Our way of dealing with multiple sentences
is the following:

1) Parse each sentence independently to form logical for-
mula corresponding to tokens in that particular sentence
while introducing free variables as discussed in section
??.

2) Use the coreference resolution system to find coreference
chains and “tie up” the free variables in different sen-
tences referring to the same entity

3) Construct the final formula of the form A1(x) ∧
A2(x) · · · ∧ An(x), where Ai(x) refers to the logical
formula constructed from the ith sentence.

4) Properly quantify over the free variables left. We make
use of the observation discussed in Section VIII noting
that these questions typically talk about a single ele-
ment/entity and hence, an existential quantification over
the conjuncted formula above will suffice

X. IMPLEMENTATION OF NEGATIONS

In our dataset, we encountered negations in primarity the
following formats :

• Appearance of non-
• Appearance of not
• Appearance of no

These three templates of appearance of negation corresponds
to different strategies in our algorithm as explained next.

• To handle negation in form of non-, we observe that
such occurences try to negate the immediate predicate
occurring next to it and hence couple it directly to that
token in tier-1 of the parsing phase.

Example : Which of the non-metal is a gas at STP?
Formula : And(IsGasAtSTP($1), Not(Metallic($1)))

• To handle negation in the form of not, we make use of
the fact that in natural language, the human perception
of not is just a token that has got some scope in the
sentence which it negates. We observe that usually,
the scope of such an appearance of not covers the
entirety of the right of the poition of the token not in
the sentence and we use this observation and verify

the placement of the “Not()‘ predicate during the parsing.

Example : Alkali metals are not bad conductors of
electricity
Formula : ForAll($1, Implies(AlkaliMetal($1),
Not(Low(Conductivity($1)))

Example : Not all alkali metals form basic oxides
Formula : Not(ForAll($1, Implies(AlkaliMetal($1),
BasicOxide(x)))

• To handle negation in the form of no, we use the
natural interpretation of “no” as “there does not exist”.
Afterwards we form the logical representation based on
rules for “not” and existential quantification.
Example : No alkali metal is a gas at STP Formula :
Not(Exists($1, And(AlkaliMetal($1), IsGasAtSTP($1)))

XI. INTEGRATION OF STANFORD CORENLP TOOLS

The need for Part of Speech tagging, corefence analysis and
active/passive classification called for the use of external NLP
packages. The Stanford CoreNLP package is one of the most
widely used tools in the NLP community for basic tasks
like POS tagging, deep parsing, Named entity recognition,
corefence analysis etc. The tool is written in Java and is
available for free.

A big difficulty in integrating the CoreNLP package with our
code was the interoperability of C# and Java. Owing to the
discontinuation of Microsoft’s support to the development of
Visual J#, we were forced to use the package as a command
line black box tool. However, such intercommunication using
files had an added disadvantage of availability as at a time only
a single user could then use the tool. A further problem arose
that on every run, the Stanford NLP tool had to load 2GB of
trained models into memory for the tasks and thus took a lot
of time (around 17 seconds per question). This method was
highly inefficient and we had to come up with a new solution
for using this tool. We finally ended up using the online demo
of the tool by querying it from within our code and reading
the XML response. This reduced the time required to the tune
of 2 sec per question as the online demo has a running service
with all models preloaded.

XII. RANKING ALGORITHM

The basic idea behind our algorithm is to arrange the discov-
ered predicates in a type-safe manner. This might result in
multiple representation trees. Thus, we need a method to rank
various representation trees on the basis of their features and
steps followed during their construction. Following are some
of the heuristics we use to rank the trees:

• An important heuristic used for ranking the completed
trees involves the cover of the logical formula on the
question. We define the cover of a leaf node as the span

of its cue word in the question. The cover of an internal
node is the union of the cover of all its children. The
greater the cover of the tree, the more likely it is to be
the correct representation.

• We assign higher confidence to filling a hole with a token
that is closer to the parent of the hole being filled in the
question.

• We penalize a tree when it involves replication of tokens
during its construction.

• We penalize a tree when we introduce a hand-crafted
token (e.g. And, Or, Implies) during its construction.

• While reproducing tokens in the algorithm, the penal-
ization factor is proportional to the size of the token
(compound or simple) being reproduced as it makes less
sense to reproduce larger trees.

• We penalize a complete tree when there are unused tokens
still remaining at the termination of the algorithm. The
penalization factor is proportional to the proportion of
unused tokens remaining. This ensures that parses that
utilize more tokens appearing in the question are ranked
higher.

XIII. EXAMPLES

The following examples illustrate the diversity of problems
currently handled by our system.

• Question: Which element is in Group 15 and has the
strongest metallic character?
a) N b) P c) Sb d) Bi
Formula: Max(MetallicProperty, Same(Group($1),15))

• Question : Which element in period 3 has highest
atomic radius and minimum metallic character?
a) Na b) Mg c) Al d) Si
Formula :
And(Max(AtomicRadiusProperty, Same(Period($1), 3)),
Min(MetallicProperty, Same(Period($1), 3)))

• Question: As we go right in a period, atomic radius
:

a) Decreases b) Increases c) Stay the same d) Can’t say
Formula: Trend(Right, AtomicRadiusProperty, $1)

• Question: What is the atomic number of Calcium?
a) 10 b) 20 c) 30 d) 40
Formula: Same($1, AtomicNumber(Ca))

• Question: Arrange the following in increasing order of
Atomic radius.
a) Be < B < C b) B < C < Be c) C < Be < B
d) Be < C < B
Formula: Order(AtomicRadiusProperty, Increase, $1)

• Question: Group 17 elements are gases at STP.
a) True b) B False

Formula: ForAll($1,Implies(Same(17,Group($1)),
GasAtSTP($1)))

• Question: An element X belongs to group 3. It has high
ionisation energy. What is its atomic number?
a) 5 b) 13 Be c) 31 d) 49
Formula:
And(And(High(FirstIonisationEnergy($1)),
Same($2,AtomicNumber($1))),Same(3,Group($1)))

• Question: Noble gas elements form ionic bonds with
oxygen.
a) True b) B False
Formula: ForAll($1,Implies(NobleGas($1),
IonicBond($1,O)))

We demonstrate a run of algorithm on the question in Figure 3.
The lexer processes the sentence and produces the following
terms - Group(), 2, Max() and MetallicProperty. These terms
are stored in a data structure alongwith their position and
confidence data. Next, we pass the options and infer that the
domain variable in this problem is of type element. This results
in the addition of $1 to the term list. The first tier of the parser
takes as input these terms and tries to assemble some of them
into compound tokens based on their metadata. Following
our heuristic of associating numbers with numeric predicates
based on proximity, we get the following compound token:
Same(Group(Hole),2). Note that Same() takes two inputs of
numeric type and the output type of Group() is numeric.
Thus, this compound token is type-consistent. This stage also
converts the terms that couldn’t be assembled into simple
tokens. We finally come to the second tier of the parser
which takes as input the simple and compound tokens from
the previous stage. As our goal is to produce a formula
that we evaluate to be true or false after substituting every
option, we start with a hole of type boolean. The simple
token Max(Hole,Hole) satisfies this hole and we recurse with
the partial tree as Max(Hole,Hole) and unused tokens list as
{MetallicProperty,Same(Group(Hole),2)}, $1. We then try to
fill the first hole of the partial tree which takes a token of type
Numeric. Thus, MetallicProperty satisfies this hole and we
recurse again with partial tree as Max(MetallicProperty,Hole)
and unused tokens list as {Same(Group(Hole),2), $1}.
The algorithm now takes the decision of filling the
hole with Same(Group(Hole),2) resulting in the partial
tree as Max(MetallicProperty,Same(Group(Hole),2)) and the
only unused token as $1. In the final step, $1 is
filled in the hole of the tree resulting in the tree
Max(MetallicProperty,Same(Group($1),2)). This is a represen-
tation tree with no holes and is returned by the algorithm as
one of the possible candidates for the logical representation
corresponding to the question.

XIV. STATISTICAL EVALUATION

One of the evaluation metrics could be the ratio of the number
of rules encoded to the corpus size of problems solved. We

encode 173 predicates/entities/functions in our algorithm out
of which 118 are names of elements. We have currently eval-
uated our algorithm on a set of 126 problems obtained from
the Tata McGraw Hill textbook for Grade XI. Our algorithm is
currently able to solve 70 out of the 126 problems. The major
reason for not being able to solve some of the problems is the
absence of modelling of certain chemistry-specific predicates.
This just corresponds to adding domain knowledge to our
system. As we can see, by adding a minimal number of
predicates (around 55, most of them being chemistry-specific),
we have been able to solve 55% of the problems in our dataset.
It is to be noted that this dataset is quite small and contains a
wide variety of questions spanning various domains in periodic
table chemistry and a number of concepts too. We believe
that our algorithm would perform reasonably well on a larger
dataset representative of questions faced by students in the real
world scenario.

XV. FUTURE WORK

There are several challenges remaining to be tackled in the
further stages of development of this system. We need to dis-
ambiguate certain cue words that might correspond to different
tokens. For example, ‘At’ might correspond to the element
Astatine, ‘In’ might correspond to the element Indium or its
English meaning. We also need to infer various representations
of numbers like ‘First’, ‘1st’ and ‘1’ as the same. Similar
disambiguation of ‘s’ and ‘p’ with respect to element, block
and orbital is also required. One way to tackle the above
problems might be to use the Named Entity Recognition tool
in the CoreNLP package.

Our current permutation removal algorithm fails to deal with
nested conjunctions, i.e. And(And(x,y),z) and And(And(x,z),y).
One way to remove this would be to model the commutative
property of And and Or in our algorithm. Furthermore, Certain
properties like electronic configuration and reactions remain to
be modelled. We need a better modelling of conjunctions to
be able to solve questions of the form “Alkali metals belong
to group 1 and are metallic in nature”. Finally, the ultimate
goal of this project would be to generate explanations for the
solutions in natural language and paraphrasing of explanations
would be an interesting problem to explore.

XVI. CONCLUSION

Natural language is very rich and at the same time often am-
biguous. Subtle difference which are invisible/inconsequential
to the machine can have dramatic effects on the meaning.
For a long time linguists have believed in the understanding
of natural language in the type-theoretic framework where
portions of sentences have types and scopes. In this project, we
tried to develop a system that analyzed the natural language
using the type-theoretic model and tried to parse the sentences
to a logical representation. While contemporary works focus
on analyzing languages by learning, we hypothesize that for
a simpler structured domain like Chemistry, a much simpler

type-theoretic approach armed with some heuristics observed
from the domain can achieve similar, if not better, success.
During the later phase of the project, we tried to use some
techniques of learning to improve upon our system and were
successful in doing so. In conclusion, we feel that a com-
bination of such a type-theoretic approach and the standard
machine learning techniques can achieve good success for a
well structured domain like Chemistry.

REFERENCES

[1] L. R. Tang and R. J. Mooney, “Using multiple clause constructors in
inductive logic programming for semantic parsing,” in In Proceedings
of the 12th European Conference on Machine Learning, 2001, pp. 466–
477.

[2] R. Ge and R. J. Mooney, “A statistical semantic parser that integrates
syntax and semantics,” in Proceedings of the Ninth Conference
on Computational Natural Language Learning, ser. CONLL ’05.
Stroudsburg, PA, USA: Association for Computational Linguistics,
2005, pp. 9–16. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1706543.1706546

[3] Y. W. Wong and R. J. Mooney, “Learning for semantic parsing with
statistical machine translation,” 2006.

[4] R. J. Kate, “Using string-kernels for learning semantic parsers,” in In
Proc. of COLING/ACL-06, 2006, pp. 913–920.

[5] K. Barker, V. K. Chaudhri, S. Y. Chaw, P. Clark, J. Fan, D. J. Israel,
S. Mishra, B. W. Porter, P. Romero, D. Tecuci, and P. Z. Yeh, “A
question-answering system for ap chemistry: Assessing kr&r technolo-
gies,” in KR, 2004, pp. 488–497.

[6] G. S. Novak and A. A. Araya, “Research on expert problem solving in
physics,” in AAAI, 1980, pp. 178–180.

[7] A. Bundy, “Mecho: A program to solve mechanics problems,” 1979.
[8] S.-Y. Jung and K. VanLehn, “Developing an intelligent tutoring system

using natural language for knowledge representation,” in Intelligent
Tutoring Systems (2), 2010, pp. 355–358.

[9] G. Navarro, “A guided tour to approximate string matching,” ACM
Comput. Surv., vol. 33, pp. 31–88, March 2001. [Online]. Available:
http://doi.acm.org/10.1145/375360.375365

[10] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer, “Feature-
rich part-of-speech tagging with a cyclic dependency network,” in
Proceedings of the 2003 Conference of the North American Chapter
of the Association for Computational Linguistics on Human Language
Technology - Volume 1, ser. NAACL ’03. Stroudsburg, PA, USA:
Association for Computational Linguistics, 2003, pp. 173–180. [Online].
Available: http://dx.doi.org/10.3115/1073445.1073478

[11] H. Lee, Y. Peirsman, A. Chang, N. Chambers, M. Surdeanu, and
D. Jurafsky, “Stanford’s multi-pass sieve coreference resolution system
at the conll-2011 shared task,” in Proceedings of the CoNLL-2011
Shared Task, 2011.

[12] K. Raghunathan, H. Lee, S. Rangarajan, N. Chambers, M. Surdeanu,
D. Jurafsky, and C. Manning, “A multi-pass sieve for coreference
resolution,” 2010.

