Learning a Multi-View Stereo Machine Supplementary Material

Abhishek Kar	Christian Häne	Jitendra Malik
UC Berkeley	UC Berkeley	UC Berkeley
akar@berkeley.edu	chaene@berkeley.edu	malik@berkeley.edu

1 Per-Category Results on ShapeNet

We present per category voxel IoU numbers for V-LSMs (Table 1) and 3D-R2N2 w/pose (Table 2) for all 13 classes in ShapeNet. We also present per category results for the quantitative comparison between D-LSM and plane sweep stereo in Table 3.

Classes	aero	bench	cabinet	car	chair	display	lamp	speaker	rifle	sofa	table	phone	vessel	mean
Views: 1	61.1	50.8	65.9	79.3	57.8	53.9	48.1	63.9	69.7	67.0	55.6	67.7	58.3	61.5
Views: 2	71.1	64.0	75.4	82.6	69.1	69.0	62.7	72.8	79.2	75.9	67.5	79.1	68.4	72.1
Views: 3	75.6	69.5	78.0	83.9	73.8	73.5	67.9	76.4	82.9	79.5	72.6	84.1	72.6	76.2
Views: 4	78.1	72.2	79.3	84.7	76.5	75.6	70.6	77.8	84.5	81.3	75.2	86.2	74.1	78.2

Classes	aero	bench	cabinet	car	chair	display	lamp	speaker	rifle	sofa	table	phone	vessel	mean
Views: 1	56.7	43.2	61.8	77.6	50.9	44.0	40.0	56.7	56.5	58.9	51.6	65.6	53.1	55.1
Views: 2	59.9	49.7	67.0	79.5	55.0	49.8	43.1	61.6	59.9	63.9	56.0	70.4	57	59.4
Views: 3	61.3	51.9	69.0	80.2	56.8	53.3	44.2	62.9	61.0	65.3	58.0	73.4	58.9	61.2
Views: 4	62.0	53.0	69.7	80.6	57.7	55.1	44.5	63.5	61.6	66.3	58.8	74.3	59.5	62.1

Table 2: Mean Voxel IoU for 3D-R2N2 w/pose for all classes in the ShapeNet test set.

Classes	aero	bench	cabinet	car	chair	display	lamp	speaker	rifle	sofa	table	phone	vessel	mean
Plane Sweep	0.029	0.047	0.074	0.043	0.054	0.079	0.043	0.068	0.023	0.066	0.054	0.041	0.043	0.051
Depth LSM	0.024	0.030	0.022	0.016	0.023	0.028	0.027	0.029	0.023	0.021	0.025	0.021	0.027	0.024

Table 3: Mean depth map error (L_1 distance between predictions and ground truth at valid pixels) in the ShapeNet test set. Please refer to the main text for more details.

2 Output Visualization

We present additional qualitative results for V-LSMs and comparisons to the baseline system of 3D-R2N2 w/pose. Each box shows the input views in the top row, output from our proposed Learnt Stereo Machine (V-LSM) in the middle row and output from 3D R2N2 (with pose) in the last row.

Figure 1: Each box shows the input views in the top row, output from our proposed Learnt Stereo Machine (V-LSM) in the middle row and output from 3D R2N2 (with pose) in the last row.

Figure 2: Each box shows the input views in the top row, output from our proposed Learnt Stereo Machine (V-LSM) in the middle row and output from 3D R2N2 (with pose) in the last row.

Figure 3: Each box shows the input views in the top row, output from our proposed Learnt Stereo Machine (V-LSM) in the middle row and output from 3D R2N2 (with pose) in the last row.

Figure 4: Each box shows the input views in the top row, output from our proposed Learnt Stereo Machine (V-LSM) in the middle row and output from 3D R2N2 (with pose) in the last row.

Figure 5: Each box shows the input views in the top row, output from our proposed Learnt Stereo Machine (V-LSM) in the middle row and output from 3D R2N2 (with pose) in the last row.

Figure 6: Each box shows the input views in the top row, output from our proposed Learnt Stereo Machine (V-LSM) in the middle row and output from 3D R2N2 (with pose) in the last row.

Figure 7: Each box shows the input views in the top row, output from our proposed Learnt Stereo Machine (V-LSM) in the middle row and output from 3D R2N2 (with pose) in the last row.

Figure 8: Each box shows the input views in the top row, output from our proposed Learnt Stereo Machine (V-LSM) in the middle row and output from 3D R2N2 (with pose) in the last row.

Figure 9: Each box shows the input views in the top row, output from our proposed Learnt Stereo Machine (V-LSM) in the middle row and output from 3D R2N2 (with pose) in the last row.

Figure 10: Each box shows the input views in the top row, output from our proposed Learnt Stereo Machine (V-LSM) in the middle row and output from 3D R2N2 (with pose) in the last row.

Figure 11: Each box shows the input views in the top row, output from our proposed Learnt Stereo Machine (V-LSM) in the middle row and output from 3D R2N2 (with pose) in the last row.

Figure 12: Each box shows the input views in the top row, output from our proposed Learnt Stereo Machine (V-LSM) in the middle row and output from 3D R2N2 (with pose) in the last row.