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Abstract

Actions as simple as grasping an object or navigating
around it require a rich understanding of that object’s 3D
shape from a given viewpoint. In this paper we repurpose
powerful learning machinery, originally developed for ob-
ject classification, to discover image cues relevant for re-
covering the 3D shape of potentially unfamiliar objects. We
cast the problem as one of local prediction of surface nor-
mals and global detection of 3D reflection symmetry planes,
which open the door for extrapolating occluded surfaces
from visible ones. We demonstrate that our method is able
to recover accurate 3D shape information for classes of ob-
jects it was not trained on, in both synthetic and real images.

“What specifies an object are invariants that are
themselves ‘formless’”

J.J. Gibson

1. Introduction
In this paper we develop a method for understanding the

3D shape of an unfamiliar object from a single image. Our
method recovers a 2.5D shape representation by densely la-
beling normals of object surfaces visible in the image. We
target the remaining 0.5D – the shape of occluded surfaces
– by inferring shape self-similarities. As one small step in
this direction, we introduce the task of detecting the orien-
tation of any planes of reflection symmetry in the 3D object
shape.

Recovering 3D object shape from a single image is
clearly an ill-posed problem and requires assumptions to
be made about the shape. The problem of reconstructing
familiar categories has seen some success, but there strong
3D priors can be learned from training data [6, 20]. The
problem of reconstructing shapes for previously unseen cat-
egories is more subtle and coming up with the right pri-
ors seems critical, in particular for recovering occluded sur-
faces. We pursue patterns of self-similarity in 3D shape

Figure 1: Given a single image of a novel object, our model
induces a pixel-wise labeling of its surface normals (right)
and predicts the orientations of all 3D planes of reflection
symmetry (center).

given just the image, hoping these will allow filling in oc-
cluded geometry with carefully placed copies of visible ge-
ometry. We define an entry-level version of the problem:
detecting the 3D orientation of planes of reflection symme-
try.

Both components of our approach rely heavily on learn-
ing large nonlinear classifiers end-to-end, which has be-
come an effective solution to many vision problems, but not
yet for 3D object shape reconstruction from a single image.
This is due, in part, to technical and logistical difficulties
involved in creating large datasets of images of objects with
aligned 3D shapes [48, 5].

In this work we leverage synthetic data, and resort to new
large-scale shape collections where ground truth symme-
try planes and surface orientations can be accurately com-
puted. We then render these models and use the images
paired with the symmetry and normal labels to learn Con-
volutional Neural Network (CNN) [13, 27] based systems
for symmetry prediction (Section 3) and normal estimation
(Section 4). We show qualitative results on real images and
empirically demonstrate the ability of our models to induce
these predictions accurately for novel objects (Section 5).
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2. Related Work
Recovering an object’s surface geometry from a single

image is an ill-posed problem in general – e.g. a same im-
age can be caused by different configurations of surface ge-
ometry, reflectance and lighting conditions. This problem
has been studied from many different perspectives, which
we will roughly divide here into physics-based and predic-
tive shape inference. These two paradigms, together with
prior work on symmetry detection and learning from CAD
model datasets are briefly summarized below.

Physics-based Shape Inference Given an image, the
preference for any particular 3D shape depends strongly on
the type of priors imposed. Physics-based approaches, such
as early shape from shading techniques [18], aimed to opti-
mize shape using variational formulations with regularizers
that encoded strong assumptions about albedo and illumi-
nation. Modern approaches such as SIRFS [3] extend these
by using richer priors and additionally reasoning over re-
flectances in the solution space.

Predictive Shape Inference. The other common
paradigm for shape inference is through supervised learn-
ing techniques that leverage training data to boost inference
results. Early work on predicting depth (and/or surface
normals) utilized graphical models [17, 38] and more recent
work have improved performance via hierarchical feature
extractors [10]. These previous approaches, however, have
focused on inferring scene-level information which differs
from our goal of perceiving the shape of objects.

Predicting object pose is another task for which many
learning-based methods have been developed. Traditional
approaches focused on particular instances and used explicit
3D models [19], but the task has recently evolved into the
prediction of category-level pose [45, 36, 14]. Category-
specific pose prediction models have still the inconvenience
that they do not generalize to novel object categories and
require large amounts of labeled data for each of their train-
ing categories. Recently, Tulsiani et al. [44] showed that
treating pose as an attribute [11, 26] and training a pre-
diction system accordingly can enable prediction for unfa-
miliar classes. Our work aims for a similar generalization
to arbitrary objects, but the symmetry and surface orienta-
tion representations we infer are much more general and
detailed.

Learning from CAD Model Collections. There has been
a growing trend of using 3D CAD model renderings to aid
computer vision algorithms. The key advantage of these ap-
proaches is that it is easy to obtain labeled training data at
scale. Examples include approaches for aligning 3D mod-
els to images [2, 28], object detection [35] and pose estima-

tion [41]. In this work, we apply this idea to normal estima-
tion and symmetry detection - both easily obtained from 3D
models.

3. Symmetry Prediction

”Symmetry is what we see at a glance; based on the
fact that there is no reason for any difference.”

- Blaise Pascal, Pensèes

Most real-world shapes possess symmetries. For exam-
ple, all object categories available in popular datasets such
as PASCAL VOC and Microsoft COCO exhibit at least bi-
lateral reflection symmetry. Symmetry detection provides
cues into the elongation modes and 3D orientation of ob-
jects which can influence perceived shape (as illustrated by
Ernst Mach square/diamond famous example [34]) and is
conjectured to aid grouping [23] and recognition [46] in hu-
man vision. Symmetry-based approaches such as Blum’s
Medial Axis Transform [4] spawned entire subcommunities
[39] devoted to their development.

Symmetry is however now rarely pursued in practical
vision systems, perhaps because too much emphasis has
been placed on“retinal” symmetries – symmetries in planar
shapes, that are only moderately distorted when projected
into an image. Most objects are not planar and their symme-
tries can be widely deformed after projecting on to images
due to the angle relative to the camera and the geometry of
central projection. Consequently, we deviate from the exist-
ing techniques for detecting retinal symmetrical structures
which seek dense correspondences across feature points,
aiming to detect subsets of correspondences that can be re-
alized by the underlying structures [29, 7, 30]. Instead, we
present a learning-based framework to directly detect the
underlying 3D symmetries for an object.

We propose to infer representations similar to those of
existing approaches that rely on 3D shape inputs [33] or
depth images [43, 37] - but we aim to do so from a single
RGB image. In fact, we leverage existing approaches for
detecting 3D symmetries in 3D meshes in order to obtain
ground truth symmetries. We can then frame a supervised
learning problem using rendered images of these shapes as
input. We describe our symmetry extraction, symmetry pre-
diction formulation and learning framework below.

Extracting Symmetries from Shapes. We follow the
procedure outlined by Mitra et al. [33] to extract the global
reflectional symmetries given a shape. We sample the shape
uniformly to correct for any biased sampling in the original
mesh points. We then consider many symmetry plane hy-
potheses, parametrized as (n, b) where the points satisfying
n · x = b lie on the plane, and iteratively refine each hy-
pothesis via ICP between original and reflected points. We
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finally discard planes that do not fit the sampled points well
and additionally suppress duplicate planes with very simi-
lar orientations. We refer the reader to [33] for the exact
mathematical formulation.

Formulation. Given an image I , we aim to predict the
symmetry planes of the underlying 3D object. Since the
exact placement of a plane only assumes a meaning once
we have inferred a reconstruction for the object and is not
well defined given a single image, we focus on inferring the
orientations of the underlying symmetry planes. LetN rep-
resent the space of unit norm 3D orientation vectors. We
first discretize this space via approximately uniform sam-
ples on the unit sphere [42] {n1, · · · , nK}. Our learning
task is modeled as a multilabel classification where we aim
to learn a mapping f ′ s.t. f(I) ∈ {0, 1}K and f(I)[k] = 1
iff nk is a correct discretization for some symmetry orien-
tation of the underlying 3D object.

Learning. As mentioned earlier, we rely on a large shape
collection to learn prediction of symmetries. We also use
a rendering engine E which, given a shape model S and
a model rotation R yields a rendered image E(S,R). To
obtain training data for our task, we repeatedly sample a
shape S belonging to some object category c ∈ C from the
shape collection and detect the underlying reflectional sym-
metry planes {Pi = (ni, bi)} as described above. We then
sample a model pose from a view distribution V and obtain
the rendered image E(S,R). The symmetry orientations
underlying the 3D shape of the rendered image ({R ∗ ni})
are computed by rotating the symmetry orientations of the
shape S. These orientations are discretized as into orien-
tation bins described above to obtain a label l ∈ {0, 1}K .
The pair (E(S,R), l) forms one training exemplar for our
problem. We sample models and views repeatedly to gener-
ate the training data - the exact details are described in the
experiments.

Given the training set constructed above, we train a CNN
to predict symmetries given a single image. More con-
cretely, we use an Alexnet [24] based architecture with K
outputs in the last layer and use a sigmoid cross entropy
loss to enforce the outputs to represent log-probability of
the corresponding orientation being a symmetry plane for
the underlying 3D object. Note that the system is trained
in a category-agnostic way ı.e. unlike common detection
and pose prediction systems [45, 41] , we share output units
across all object categories c ∈ C. This implicitly enforces
the CNN based symmetry prediction system to exploit sim-
ilarities across object classes and learn common represen-
tations that may be useful for generalizing to novel objects.
Our experiments empirically demonstrate that the system
we describe is indeed capable of predicting symmetries for
objects belonging to a category c /∈ C.

4. Surface Normal Estimation
The importance of perceiving the surface layout was

highlighted by Gibson as early as 1950 [15]. These ideas
were grounded more computationally as Marr’s 2.5D sketch
representations [32]. Koenderink, Van Doorn and Kappers
later demonstrated [22] the ability of humans to recover
surface orientations from pictures and shaded objects. All
these seminal works, perceptual as well as computational,
emphasized the importance of perceiving surface orienta-
tions as an integral part of perception.

Single-image depth [10, 38, 21] and surface normal
[12, 9, 47] prediction using CNNs has shown promise when
dealing with the shape of scenes. Scenes exhibit strong reg-
ularities: the ground and the ceiling is horizontal, the walls
are vertical. Here we demonstrate that these models can
be leveraged to label the much more complex normals of
object surfaces. We describe our formulation and learning
procedure below.

Formulation. Our aim is to learn a model that is capa-
ble of constructing a mapping from pixels to orientations
given an image I(·, ·). The desired output, given the input
image I is a spatial orientation function N(·, ·) such that
N(x, y) is the surface orientation of the point in the under-
lying 3D shape that is projected at pixel (x, y) in the given
image. Instead of directly predicting an orientation n ∈ N
at each spatial location, we follow a formulation motivated
by Koenderink’s experiment where the subjects were able
to reconstruct a dense sampling of surface orientations in
images using an element from discrete set of gauge figures
placed at every location. This discretization of surface ori-
entations has been previously successfully leveraged [25]
for estimating surface normals of a scene. Our intuition is
that this approach combined with CNN architectures that
have shown rapid recent progress for pixelwise classifica-
tion tasks e.g. semantic segmentation can yield promising
results in the domain of object shape perception.

Operationally, similar to our approach for symmetry
plane orientations, we discretize the space of visible sur-
face orientations into K discrete bins using approximately
uniform samples over the half unit sphere [42]. The goal
for normal estimation is to then learn a function approxi-
mation f s.t f(I) = N where N(x, y) assigns the correct
orientation bin for the 3D point projected at (x, y).

Learning. Our data generation process is similar to the
task of symmetry prediction described previously. We use
a rendering engine E which, given a shape model S and a
model pose R yields a rendered image E(S,R) and addi-
tionally provides a surface orientation image N̂(S,R). We
first sample a category c from training classes C and then a
shape S. A random view R is sampled from a view distri-
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Figure 2: Symmetry predictions for ‘Learned’ and ‘Induced’ settings for various test objects in our dataset. Each symmetry
plane is visualized via a 3D circle parallel to the plane and an arrow denoting the normal to the plane. The green planes repre-
sent the ground-truth symmetries, the blue symmetry planes are predicted in the ‘Learned’ setting and the orange symmetry
planes are predicted under the ‘Induced’ setting.

bution V and the engine E yields a rendering and normal
image pair (I, N̂). We then discretize N̂ using the orien-
tation bins above to obtain N where N(x, y) ∈ {1, · · ·K}
is the orientation bin for the underlying surface. The pair
(I,N) forms a training sample for our learning system.

Given the training set constructed above, we train a CNN
to predict pixel-wise surface normals. Our architecture
choice is motivated by recent methods that leverage CNNs
to predict a dense pixel-wise output e.g. semantic segmen-
tation [31] and image synthesis [8]. A common technique
used in these architectures is to eschew fully connected lay-
ers common for image-level classification tasks and instead
use multiple convolution layers followed by deconvolution
layers (reverse convolution with unpooling) to produce a
dense pixelwise output. Let C(k, s, o), D(k, s, o) denote a
convolution layer with kernel size k, (downsampling(conv)
/ upsampling(deconv)) stride s and o output channels and
P (k, s) represent a max-pooling layer with kernel size k
and stride s. Using the shorthand C ′(o) for C(3, 1, o) −
C(3, 1, o)− C(3, 1, o)− P (2, 2), our network architecture
is I−C ′(64)−C ′(128)−C ′(256)−C ′(512)−C ′(512)−
D(3, 2, 256)−D(3, 2, 128)−D(3, 2, 64)−D(3, 2,K). The
network above takes an input image and produces an output
pixelwise log-probability distribution over the K orienta-
tion bins. We minimize a softmax loss over the pixelwise
log-probabilities predicted and train the CNN described us-
ing the Caffe framework. The convolutional layers are ini-
tialized using the VGG16 pretrained model for image clas-
sification [40] and the deconvolution layers are initialized
randomly. The architecture described produces a 113× 113
spatial output given an input image of size 224 × 224 and
this resolution allows our model to capture sharp discon-
tinuities. In a similar spirit to symmetry orientation pre-

diction, the category-agnostic formulation and learning of
the surface orientation prediction allow us to learn com-
mon representations to predict surface normals for novel
objects.

5. Experiments

Experiments were performed to investigate the follow-
ing: 1) the performance of our symmetry and normal pre-
diction systems and 2) their ability to generalize to novel
unseen object categories. We first describe our experimen-
tal setup and then present results on symmetry detection and
surface normal estimation. Finally, we show qualitative re-
sults on real world images in Figure 5.

Dataset. We use the ShapeNet [1] dataset to download
3D models for objects corresponding to 57 object classes.
These 3D models (collected from large scale 3D model
repositories such as 3D Warehouse and Yobi3D) belong to
object categories ranging from cars and buses to faucets and
washers and form a varied set of commonly occurring rigid
objects. We keep up to 200 models per object category (with
a 75%/25% train/test split) and use 200 renderings for each
3D model in our training set to train the prediction systems
previously described (totalling around 1.5 million images).
In addition, we also sample equally from all classes for each
training iteration in order to counter the class imbalance in
the number of available models. Our testing set includes
3200 rendered images from each of the 57 object categories.
For ease of reproducibility, we plan to make our train/test
splits and code available.
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Figure 3: Precision-Recall plots for symmetry detection
under ‘Induced’ and ‘Learned’ settings for representative
classes.

Viewpoint Variability. The viewing angle for an ob-
ject can be described using three euler angles - azimuth
(φ ∈ (−180, 180]), elevation(ϕ ∈ (−180, 180]) and cyclo-
rotation(ψ ∈ (−90, 90]). Objects, however, tend to follow
certain view distributions (e.g. we rarely see cars from the
bottom). In particular, the primary variation in viewing an-
gle for objects in natural scenes is along the azimuth. To
account for this, we sample views uniformly from a set of
more natural views VN = {φ ∈ (−180, 180]} × {ϕ ∈
[0, 10]} × {ψ ∈ [0, 0]}. It is, however, also important
to handle objects seen from arbitrary views. We there-
fore also train and test our models under a more diverse
view sampling from VD = {φ ∈ (−180, 180]} × {ϕ ∈
[0, 50]} × {ψ ∈ [−30, 30]} to analyze the prediction and
induction performance under more challenging settings.

Induction Splits. A primary aim of our experimental
evaluation is to analyze the induction ability of our system
across novel object classes. For this analysis, we randomly
partitioned the object classes C in the ShapeNet dataset in
two disjoint sets CA and CB - the categories in each set
are listed in the appendix. For both the shape prediction
tasks we study - normal and symmetry prediction, we train
3 models with the same hyper-parameters. One model is
trained on the entire set of classes C and two models over
CA and CB respectively. This allows us to empirically esti-
mate the induction performance for a class c ∈ (CA or CB)
by comparing the performance of the systems trained over

Figure 4: Analysis of performance gap (in AP θs ) for ob-
ject categories between ‘Induced’ and ‘Learned’ settings for
symmetry prediction.

Mean AP θs Setting

Viewpoint Sampling Learned Induced Random
VN 0.69 0.58 0.32
VD 0.59 0.47 0.07

Table 1: Mean performance across classes for symmetry
prediction.

C and (CB or CA) respectively. In all the experiments de-
scribed below, we report numbers under both the ‘Learned’
and ‘Induced’ settings. The ‘Learned’ setting denotes the
performance of our system when trained using all object
classes and the ‘Induced’ setting indicates our performance
when, for each object class we use the system trained on
the set of classes (CA or CB) not containing the class under
consideration.

5.1. Symmetry Prediction

Evaluation Criterion. Since the task we address is not
a standard one, we need to decide on evaluation metrics.
In the related task of pose prediction, the common prac-
tice is to measure the deviation between predicted and an-
notated pose [45, 41]. Symmetries, however, do not lend
themselves to a similar analysis because there can be mul-
tiple of them and consequently, a symmetry prediction sys-
tem would yield multiple symmetry hypotheses with vary-
ing confidences. In that respect, our task perhaps has more
in common with object detection - given an image with a
variable number of symmetry planes (c.f . objects), a pre-
diction system outputs a few distinct hypotheses from the
continuous space of plane orientations (c.f . bounding box
locations). We therefore adapt the standard object detection
Average Precision (AP) metric for our task.
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Figure 5: Predicted symmetry orientations and surface normals for objects segmented out from real world images. The
symmetries are shown using the convention in Figure 2 and surface normals are mapped into RGB space via the mapping
X →B, Y →R, Z →G.

We proposeAP θs as a metric to evaluate the performance
of a symmetry prediction system. Given the ground-truth
symmetries of an object N̂ = {n̂i} and predicted sym-
metry orientations N = {nj} alongwith their probability
scores pj , a prediction n ∈ N is considered correct if ∃i s.t
∆s(n, n̂i) ≤ θ. Akin to the object detection setting, we also
prevent double counting of ground-truth symmetries when
matching a predicted symmetry. We vary the probability
threshold for symmetry detection and consider all instances
of a class together to obtain a point on the Precision-Recall
curve. The AP θs metric denotes the area under the above
Precision-Recall curve.

Results. We report the analysis of our system in Table 1.
We use θ = π

18 for measuring the performance under the
AP θs metric. We report the performance of our systems
for both view sampling settings VN and VD. The system
trained under the view sampling VN only classifies sym-
metry plane orientations among 10 possible horizontal di-
rections whereas the system under VD setting predicts from
among 60 possible orientations. We observe that the perfor-
mance in the ‘Induced’ setting, where we have not seen a
single annotated object of the corresponding class, is com-
parable to the ‘Learned’ setting with observed training ex-
amples. It is also encouraging that the results hold in the
natural as well as diverse view sampling scenarios and that
the ‘Induced’ results are significantly better than an unin-
formed random baseline, thereby supporting our claim of
the ability to generalize symmetry prediction across novel
objects.

Analysis and Observations. We manually grouped to-
gether object categories in coarse groups based on the shape
of the typical bounding convex set. The resulting groups
are indicated in Figure 4 which also shows the performance
gap, under the VN view sampling, between the ‘Learned’

and ‘Induced’ settings. We observe that the gap for a large
fraction of the categories is low. In particular, we observe
this trend for ’Circular’ and ’Cuboidal’ classes - this may
perhaps be a result of a large number of such classes be-
ing available for training and thus aiding generalization for
novel objects of similar classes.

We also show some predictions from our system in Fig-
ure 2. Both the induced as well as the trained system cor-
rectly predict most of the symmetries present in the objects.
One of the primary error modes we observe in the ’Induced’
setting is over-generalization where the system confidently
predicts symmetries in addition to the correct one for ob-
jects like motorbikes, rifles etc., possibly on account of
more commonly occurring classes with multiple symme-
tries. We show the performance under various settings in
Figure 3 for some representative classes. The first two are
typical classes with strong generalization results whereas
the performance on category ‘car’ reduces significantly.

5.2. Surface Normal Estimation

Evaluation Metrics. We follow the evaluation protocol
from Fouhey et al. [12] and evaluate our predicted surface
normals against the ground truth using 5 metrics - mean an-
gular error, median angular error and the fraction of ‘good’
pixels - pixels whose predicted normals lie within 11.25◦,
22.5◦ and 30◦ of the ground truth normals respectively. All
the above metrics are computed per object category and
then reported below by averaging across the 57 classes. The
mean and median angular error are computed across all ob-
ject pixels per category (background is ignored) and so are
the fraction of ‘good’ pixels. We also report curves of frac-
tion of ‘good’ pixels vs. the angular threshold at which they
are calculated and compute the area under the curve when
the max angular threshold is 30◦.
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Figure 6: Surface normal predictions using our learned and induced models on held out data. Each unit in the figure shows
(from left to right) the image, its ground truth surface normals, surface normals predicted by our ‘Learned’ model (trained
on all classes) and surface normals predicted by our ‘Induced’ model (trained on the subset of categories not containing this
particular class). Surface normals are mapped into RGB space via the mapping X →B, Y →R, Z →G

Results. The results for our surface normal prediction
system(s) are shown in Table 2. As in the symmetry predic-
tion task, we report results in both the VN and VD settings.
For both settings, the surface normal direction is discretized
into 60 uniformly sampled bins on the hemisphere and the
predicted labels are converted back into surface normals by
looking up the orientation corresponding to the predicted
bin. The ‘Learned’ and ‘Induced’ settings again refer to

the experimental setups where the system was trained on
all object classes and on the split of the dataset (CA or CB)
not containing this object class respectively. It can be seen
that our model achieves a pixel-wise median angular error
rate of around 15◦ and moreover the performance for the
‘Learned’ and ‘Induced’ settings are comparable, validating
the claim that our surface normal prediction system general-
izes to unseen object categories. This trend is visible across

7



Metrics VN VD

Learned Induced Learned Induced
Mean Error 21.3 23.8 23.5 26.5
Median Error 12.7 14.7 14.8 17.1

%GP 11.25◦ 50.4 45.7 41.6 37.1
%GP 22.5◦ 71.9 67.0 67.6 62.1
%GP 30.0◦ 77.8 73.5 74.7 69.5

Table 2: Mean performance across classes for surface nor-
mal estimation under various view settings. Lower is better
for the top half of the table and higher is better for the per-
cent of ‘good’ pixels metrics. Please refer to the text for
more details on the metrics.

all error metrics as well as across viewpoint variation set-
tings VN and VD.

Figure 7: Fraction of good pixels vs. degree threshold
plots for surface normal prediction under ‘Induced’ and
‘Learned’ settings for representative classes. The area un-
der the curves are mentioned in the plot legends.

Some results from our surface normal predictor are
shown in Figure 6. It can be seen that our system is able to
reliably predict surface normals at a coarse level while also
respecting discontinuities/edges. The major error modes for
our system are fine structures which it is unable to handle
owing to the large receptive fields in the middle convolu-
tional layers in our architecture. Figure 8 shows the rela-
tive performance (in median angular error) of our ‘Learned’

Figure 8: Analysis of performance gap in (median angular
error) between ‘Induced’ and ‘Learned’ settings for surface
normal prediction.

and ‘Induced’ systems for various shape ‘super-categories’
such as circular, cuboidal etc. It can be seen that the gen-
eralization works best for circular and cuboidal categories
(consistent with the symmetry prediction experiments). We
also show some plots for fraction of good pixels vs. angular
threshold in Figure 7. It can be seen that surface normals for
‘microwave’ (cuboidal) and ‘mug’ (cylindrical) generalize
well whereas a non-standard shape such as ‘pillow’ doesn’t.
‘Chairs’ on the other hand are overall worse off than other
simpler categories but the coarse structures in them gener-
alize well giving rise to similar curves for ‘Learned’ and
‘Induced’. Detailed results and plots for symmetry predic-
tion and surface normal estimation for all 57 object classes
can be found in the appendix.

6. Discussion

Our results suggest that it is feasible to induce surface
normals and 3D symmetry planes for objects from unfamil-
iar categories, by learning hierarchical feature extractors on
a large-scale dataset of CAD model renderings. We also
demonstrated that our learned models can operate on real
images. The techniques we present here can in principle
also be applied to predicting other shape properties such as
local curvature, rotational symmetries etc.

Our approach connects modern representation learning
approaches with the spirit of the pioneers in computer vi-
sion, that emphasized spatial vision and the understanding
of shape. Should reconstruction be an input to classifica-
tion, as for example Marr postulated [32]? Should it be
the other way around? Or are both best handled as parallel
processes, as in the dual stream hypothesis of neuroscience
[16]? We hope our approach would be useful for appli-
cations where shape understanding is important, including
robotic perception and human-computer interaction.

8



Acknowledgements
This work was supported in part by NSF Award IIS-

1212798 and ONR MURI-N00014-10-1-0933. Shubham
Tulsiani was supported by the Berkeley fellowship. João
Carreira was supported by the Portuguese Science Foun-
dation, FCT, under grant SFRH/BPD/84194/2012. Qixing
Huang thanks the gift awards from Adobe and Intel. We
gratefully acknowledge NVIDIA corporation for GPU do-
nations towards this research.

References
[1] Shapenet. http://www.shapenet.org. 4, 11

[2] M. Aubry, D. Maturana, A. Efros, B. Russell, and
J. Sivic. Seeing 3d chairs: exemplar part-based 2d-
3d alignment using a large dataset of cad models. In
CVPR, 2014. 2

[3] J. T. Barron and J. Malik. Shape, illumination, and
reflectance from shading. TPAMI, 2015. 2

[4] H. Blum. A transformation for extracting new descrip-
tors of shape. In Proc. Models for the Perception of
Speech and Visual Form, 1967. 2

[5] J. Carreira, S. Vicente, L. Agapito, and J. Batista. Lift-
ing object detection datasets into 3d. 2015. 1

[6] T. J. Cashman and A. W. Fitzgibbon. What shape are
dolphins? building 3d morphable models from 2d im-
ages. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 2012. 1

[7] D. Ceylan, N. J. Mitra, Y. Zheng, and M. Pauly. Cou-
pled structure-from-motion and 3d symmetry detec-
tion for urban facades. ACM Trans. Graph., 2014. 2

[8] A. Dosovitskiy and T. Brox. Inverting convolutional
networks with convolutional networks. arXiv preprint
arXiv:1506.02753, 2015. 4

[9] D. Eigen and R. Fergus. Predicting depth, surface nor-
mals and semantic labels with a common multi-scale
convolutional architecture. In ICCV, 2015. 3

[10] D. Eigen, C. Puhrsch, and R. Fergus. Depth map pre-
diction from a single image using a multi-scale deep
network. In NIPS, 2014. 2, 3

[11] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. De-
scribing objects by their attributes. In CVPR, 2009.
2

[12] D. F. Fouhey, A. Gupta, and M. Hebert. Data-driven
3D primitives for single image understanding. In
ICCV, 2013. 3, 6

[13] K. Fukushima. Neocognitron: A self-organizing neu-
ral network model for a mechanism of pattern recog-
nition unaffected by shift in position. Biological Cy-
bernetics, 1980. 1

[14] A. Ghodrati, M. Pedersoli, and T. Tuytelaars. Is 2d
information enough for viewpoint estimation? In
BMVC, 2014. 2

[15] J. J. Gibson. The perception of the visual world. 1950.
3

[16] M. A. Goodale and A. D. Milner. Separate visual
pathways for perception and action. Trends in neu-
rosciences, 15(1):20–25, 1992. 8

[17] D. Hoiem, A. A. Efros, and M. Hebert. Automatic
photo pop-up. In SIGGRAPH, 2005. 2

[18] B. K. Horn. Obtaining shape from shading informa-
tion. In Shape from shading, pages 123–171. MIT
press, 1989. 2

[19] D. P. Huttenlocher and S. Ullman. Recognizing solid
objects by alignment with an image. IJCV, 1990. 2

[20] A. Kar, S. Tulsiani, J. Carreira, and J. Malik.
Category-specific object reconstruction from a single
image. In CVPR, 2015. 1

[21] K. Karsch, C. Liu, and S. B. Kang. Depthtrans-
fer: Depth extraction from video using non-parametric
sampling. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 2014. 3

[22] J. J. Koenderink, A. J. Van Doorn, and A. M. Kappers.
Pictorial surface attitude and local depth comparisons.
Perception & Psychophysics, 58(2):163–173, 1996. 3

[23] K. Koffka. Principles of Gestalt psychology, vol-
ume 44. Routledge, 2013. 2

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Im-
agenet classification with deep convolutional neural
networks. In NIPS, 2012. 3
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Appendix
Induction Splits. For the analysis of the induction ability
of our system across novel object classes, we randomly par-
titioned the object classes C in the ShapeNet dataset [1] in
two disjoint sets CA and CB. The categories in each set are
listed in Table 1.

CA CB
airplane ashcan
bathtub bag

bed basket
bicycle bench

bookshelf birdhouse
bottle boat
bowl cabinet
bus camera
can cap

clock car
computer keyboard cellular telephone

dishwasher chair
file display

loudspeaker earphone
mailbox faucet

microphone guitar
microwave helmet

mug jar
piano knife
pillow lamp
pistol laptop
pot motorcycle

printer remote control
skateboard rifle

stove rocket
table sofa

telephone tower
train vessel

washer

Table 1: Induction Splits

Shape Groups. We provided additional analysis of our
method by manually grouping together object categories in
coarse groups based on the shape of the typical bounding
convex set. The resulting groups used were as follows -

• Circular : ashcan, basket, bottle, bowl, can, cap,
clock, helmet, jar, lamp, microphone, mug, pot, rocket,
tower, washer

• Elongated : computer keyboard, knife, piano, rifle,
skateboard, train

• Planar : airplane, bag, bench, bicycle, bookshelf, cel-
lular telephone, display, file, laptop, motorcycle, pis-
tol, remote control

• Cuboidal : bathtub, bed, bus, cabinet, camera, car,
chair, dishwasher, loudspeaker, mailbox, microwave,
pillow, printer, sofa, stove, table

• Misc : birdhouse, boat, earphone, faucet, guitar, tele-
phone, vessel

Symmetry Prediction. We show the Precision-Recall
plots for symmetry prediction for all classes under the view
sampling Vn and Vd in Figure 1 and Figure 2 respectively.
The performance under AP θs metric is also reported in Ta-
ble 2.

Normal Estimation. We show the performance plots for
normal estimation for all classes under the view sampling
Vn and Vd in Figure 3 and Figure 4 respectively. The per-
formance under various metrics under the view sampling Vn
and Vd are reported in Table 3 and Table 4 respectively.

11



Figure 1: Precision-Recall plots for symmetry detection under ‘Induced’ and ‘Learned’ settings and Vn view sampling for all
classes.
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Figure 2: Precision-Recall plots for symmetry detection under ‘Induced’ and ‘Learned’ settings and Vd view sampling for all
classes.
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View Setting VD VN

Learned Induced Random Learned Induced Random

airplane 0.41 0.16 0.04 0.53 0.36 0.20
ashcan 0.73 0.70 0.14 0.69 0.72 0.67
bag 0.68 0.42 0.05 0.84 0.50 0.26
basket 0.78 0.76 0.10 0.79 0.77 0.44
bathtub 0.54 0.40 0.05 0.73 0.49 0.27
bed 0.44 0.36 0.03 0.42 0.39 0.15
bench 0.66 0.57 0.05 0.80 0.63 0.21
bicycle 0.57 0.56 0.03 0.65 0.53 0.14
birdhouse 0.64 0.55 0.08 0.76 0.74 0.37
boat 0.45 0.21 0.03 0.70 0.52 0.19
bookshelf 0.61 0.56 0.04 0.71 0.55 0.20
bottle 0.83 0.72 0.17 0.82 0.79 0.78
bowl 0.81 0.78 0.18 0.80 0.82 0.85
bus 0.71 0.57 0.04 0.80 0.65 0.22
cabinet 0.78 0.77 0.05 0.81 0.79 0.26
camera 0.32 0.36 0.03 0.31 0.42 0.13
can 0.82 0.80 0.18 0.80 0.85 0.85
cap 0.54 0.46 0.13 0.67 0.61 0.58
car 0.66 0.46 0.03 0.80 0.55 0.15
cellular telephone 0.77 0.71 0.05 0.88 0.83 0.26
chair 0.48 0.39 0.04 0.60 0.35 0.19
clock 0.53 0.29 0.05 0.62 0.58 0.26
computer keyboard 0.70 0.34 0.06 0.72 0.40 0.31
dishwasher 0.60 0.61 0.06 0.68 0.67 0.32
display 0.66 0.42 0.05 0.78 0.53 0.25
earphone 0.58 0.25 0.05 0.77 0.46 0.24
faucet 0.25 0.24 0.06 0.36 0.36 0.27
file 0.72 0.64 0.06 0.81 0.71 0.27
guitar 0.52 0.22 0.05 0.67 0.33 0.27
helmet 0.27 0.14 0.05 0.43 0.31 0.23
jar 0.72 0.66 0.16 0.79 0.76 0.74
knife 0.41 0.31 0.08 0.53 0.42 0.40
lamp 0.61 0.54 0.12 0.68 0.55 0.62
laptop 0.66 0.49 0.04 0.83 0.65 0.17
loudspeaker 0.61 0.40 0.04 0.63 0.61 0.22
mailbox 0.53 0.45 0.07 0.56 0.57 0.33
microphone 0.60 0.54 0.15 0.74 0.50 0.61
microwave 0.66 0.66 0.04 0.60 0.64 0.20
motorcycle 0.54 0.48 0.03 0.69 0.51 0.12
mug 0.41 0.44 0.11 0.49 0.52 0.46
piano 0.58 0.46 0.03 0.71 0.55 0.14
pillow 0.52 0.22 0.08 0.55 0.32 0.33
pistol 0.48 0.36 0.04 0.77 0.61 0.18
pot 0.70 0.65 0.12 0.76 0.71 0.56
printer 0.49 0.42 0.03 0.53 0.44 0.14
remote control 0.60 0.46 0.06 0.65 0.55 0.29
rifle 0.54 0.34 0.05 0.77 0.63 0.22
rocket 0.29 0.19 0.05 0.65 0.55 0.21
skateboard 0.78 0.31 0.06 0.91 0.81 0.31
sofa 0.39 0.37 0.03 0.53 0.44 0.14
stove 0.56 0.56 0.05 0.69 0.55 0.25
table 0.73 0.63 0.07 0.77 0.64 0.38
telephone 0.71 0.71 0.05 0.86 0.86 0.25
tower 0.60 0.56 0.12 0.66 0.59 0.56
train 0.70 0.48 0.05 0.86 0.77 0.26
vessel 0.50 0.27 0.04 0.76 0.60 0.22
washer 0.65 0.64 0.06 0.68 0.67 0.27

Table 2: Performance across classes for symmetry prediction under AP θs metric.
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Figure 3: Fraction of good pixels vs. degree threshold plots for surface normal prediction under ‘Induced’ and ‘Learned’
settings and Vn view sampling for all classes. The area under the curves are mentioned in the plot legends.
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Figure 4: Fraction of good pixels vs. degree threshold plots for surface normal prediction under ‘Induced’ and ‘Learned’
settings and Vd view sampling for all classes. The area under the curves are mentioned in the plot legends.
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Metrics %GP 11.25◦ %GP 22.5◦ %GP 30.0◦ Mean Error Median Error

airplane 29.3 (25.2) 51.7 (44.2) 60.7 (53.0) 30.9 (34.7) 21.4 (27.2)
ashcan 50.0 (48.8) 70.5 (68.7) 76.0 (74.3) 21.9 (22.9) 11.3 (11.5)
bag 46.2 (43.0) 73.8 (70.4) 81.5 (78.9) 19.2 (20.5) 12.2 (13.2)
basket 60.0 (59.7) 76.8 (76.4) 80.2 (79.8) 20.1 (20.3) 9.4 (9.5)
bathtub 57.6 (50.8) 81.2 (75.7) 86.1 (82.2) 17.2 (19.6) 9.8 (11.1)
bed 44.8 (43.2) 61.8 (60.4) 66.8 (65.6) 28.6 (29.5) 13.2 (14.0)
bench 40.0 (39.1) 57.3 (55.6) 64.1 (62.3) 29.2 (30.3) 16.7 (17.7)
bicycle 28.6 (27.1) 49.4 (47.6) 58.3 (56.8) 31.9 (32.7) 23.0 (24.4)
birdhouse 62.3 (59.6) 79.9 (77.8) 83.1 (81.2) 18.4 (19.5) 9.2 (9.6)
boat 32.0 (27.6) 56.9 (49.0) 66.3 (58.2) 28.2 (32.4) 18.6 (23.2)
bookshelf 54.0 (50.6) 71.6 (68.2) 75.2 (72.2) 23.7 (25.6) 10.3 (11.1)
bottle 69.5 (64.2) 92.8 (90.3) 95.7 (94.2) 11.0 (12.2) 8.5 (9.0)
bowl 58.4 (48.8) 84.7 (78.5) 88.7 (84.1) 15.5 (18.8) 9.9 (11.5)
bus 61.2 (53.2) 82.3 (76.9) 86.7 (82.1) 16.3 (19.5) 9.3 (10.5)
cabinet 67.5 (66.1) 84.6 (84.3) 87.6 (87.4) 15.2 (15.5) 8.7 (8.9)
camera 43.1 (40.9) 66.1 (63.2) 73.1 (70.3) 24.0 (25.6) 13.6 (14.5)
can 76.1 (65.1) 95.5 (87.5) 97.1 (91.0) 9.8 (13.2) 8.0 (8.9)
cap 58.6 (38.3) 84.1 (68.6) 87.9 (77.6) 15.9 (22.2) 9.8 (14.5)
car 33.5 (25.4) 61.0 (48.8) 70.9 (59.0) 25.3 (31.8) 16.9 (23.3)
cellular telephone 59.3 (58.6) 81.6 (80.9) 86.7 (86.1) 16.3 (16.7) 9.5 (9.7)
chair 43.2 (40.5) 63.8 (60.8) 70.5 (68.0) 25.9 (27.3) 13.9 (15.3)
clock 50.2 (39.3) 71.6 (60.0) 76.9 (67.1) 21.6 (26.9) 11.2 (15.4)
computer keyboard 47.3 (40.0) 71.8 (60.6) 78.3 (66.8) 21.9 (29.2) 11.9 (15.4)
dishwasher 79.6 (76.9) 92.2 (91.3) 93.6 (92.9) 11.6 (12.2) 7.9 (8.0)
display 56.0 (49.6) 78.5 (74.2) 83.5 (80.3) 18.0 (20.4) 10.0 (11.4)
earphone 29.2 (23.1) 54.4 (43.0) 64.4 (53.0) 28.9 (34.6) 20.0 (27.6)
faucet 35.6 (32.4) 58.8 (53.8) 68.4 (63.6) 26.3 (28.6) 17.5 (20.1)
file 71.1 (66.9) 87.4 (85.9) 89.8 (88.8) 14.2 (15.1) 8.6 (8.9)
guitar 45.0 (32.8) 67.8 (53.3) 74.7 (61.8) 22.9 (29.7) 12.8 (20.3)
helmet 36.6 (25.7) 66.4 (51.2) 75.8 (61.6) 22.6 (30.2) 15.1 (21.7)
jar 56.5 (55.5) 82.3 (81.8) 87.0 (86.7) 16.2 (16.5) 10.1 (10.3)
knife 40.4 (34.6) 61.0 (53.7) 68.6 (62.4) 25.5 (29.1) 15.5 (19.9)
lamp 46.9 (44.7) 71.5 (68.3) 78.4 (75.5) 21.1 (22.6) 12.1 (12.9)
laptop 61.3 (44.7) 83.7 (66.9) 88.1 (75.0) 15.7 (23.4) 9.6 (12.7)
loudspeaker 56.8 (55.2) 75.4 (74.5) 80.4 (79.9) 19.4 (19.8) 9.9 (10.1)
mailbox 54.8 (51.7) 75.5 (72.4) 80.4 (77.9) 19.6 (21.1) 10.2 (10.8)
microphone 52.1 (52.5) 76.7 (77.7) 82.6 (83.5) 18.7 (18.4) 10.7 (10.7)
microwave 76.6 (71.7) 90.7 (89.4) 92.6 (91.5) 12.3 (13.3) 8.1 (8.4)
motorcycle 18.1 (16.4) 36.9 (34.2) 46.6 (43.8) 38.1 (39.7) 32.9 (35.5)
mug 65.7 (60.5) 87.5 (85.1) 90.6 (89.2) 13.9 (15.0) 8.8 (9.4)
piano 52.8 (48.8) 71.4 (67.7) 76.3 (73.1) 22.4 (24.5) 10.6 (11.5)
pillow 37.7 (27.3) 71.4 (55.3) 81.0 (66.3) 20.3 (27.7) 14.2 (19.8)
pistol 35.4 (28.8) 58.0 (51.0) 66.7 (60.2) 27.1 (31.0) 17.5 (21.9)
pot 45.9 (45.2) 69.3 (68.5) 75.2 (74.4) 22.6 (23.0) 12.3 (12.5)
printer 59.1 (56.1) 78.1 (76.3) 82.7 (80.9) 18.6 (19.8) 9.6 (10.1)
remote control 45.9 (42.0) 68.7 (64.8) 76.9 (73.9) 21.7 (23.3) 12.5 (14.1)
rifle 32.9 (30.4) 52.3 (48.5) 60.2 (56.1) 31.0 (33.7) 20.7 (23.9)
rocket 35.4 (28.9) 62.6 (53.0) 72.0 (63.2) 24.5 (28.9) 16.4 (20.7)
skateboard 46.6 (40.6) 68.2 (60.9) 74.6 (67.7) 23.4 (28.1) 12.3 (15.3)
sofa 48.1 (46.8) 69.1 (67.4) 74.4 (73.0) 24.0 (24.8) 11.7 (12.1)
stove 67.6 (66.2) 84.2 (83.7) 87.5 (87.2) 15.3 (15.6) 8.8 (8.9)
table 52.6 (50.8) 68.2 (66.1) 72.9 (71.1) 24.6 (25.8) 10.4 (10.9)
telephone 58.1 (57.6) 81.4 (81.2) 86.6 (86.6) 16.5 (16.5) 9.8 (9.8)
tower 51.1 (49.2) 71.3 (69.7) 76.7 (75.6) 21.8 (22.4) 11.0 (11.5)
train 41.1 (36.9) 61.6 (58.0) 68.4 (65.4) 26.5 (28.6) 14.7 (16.9)
vessel 31.8 (27.1) 55.2 (47.2) 64.3 (56.1) 29.1 (33.7) 19.3 (24.8)
washer 74.5 (74.9) 89.4 (89.3) 91.7 (91.4) 12.8 (12.9) 8.2 (8.2)

Table 3: Surface normal estimation performance for all classes under the Vn view sampling. The numbers outside the
parenthesis denote the ‘Learned’ setting and the evaluation in the ‘Induced’ setting is reported in the parenthesis. Higher is
better for the first three percent of ‘good’ pixels metrics and lower is better for last two three error metrics.
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Metrics %GP 11.25◦ %GP 22.5◦ %GP 30.0◦ Mean Error Median Error

airplane 23.2 (20.0) 46.4 (38.8) 56.9 (47.6) 32.7 (37.7) 24.9 (32.3)
ashcan 42.0 (42.3) 67.7 (67.1) 74.6 (73.8) 23.2 (23.6) 13.3 (13.3)
bag 35.6 (34.0) 62.6 (59.1) 71.7 (68.1) 24.9 (26.9) 16.1 (17.2)
basket 42.9 (42.9) 67.6 (65.7) 73.5 (71.3) 24.8 (26.0) 13.0 (13.2)
bathtub 39.8 (32.8) 66.6 (59.1) 73.8 (67.3) 24.6 (28.6) 14.1 (17.4)
bed 36.5 (34.0) 59.3 (56.9) 65.9 (63.8) 29.0 (30.5) 16.1 (17.6)
bench 33.3 (32.4) 56.4 (54.3) 64.0 (61.9) 29.4 (30.7) 18.1 (19.2)
bicycle 26.5 (25.6) 48.5 (47.8) 58.2 (57.9) 32.0 (32.2) 23.6 (24.1)
birdhouse 44.4 (42.1) 71.4 (68.5) 78.0 (75.8) 22.2 (23.4) 12.6 (13.3)
boat 25.7 (22.8) 49.2 (43.7) 58.5 (52.4) 32.6 (35.9) 23.1 (27.7)
bookshelf 40.0 (36.7) 62.7 (59.7) 68.4 (65.6) 28.1 (30.0) 14.3 (15.9)
bottle 57.6 (52.0) 88.1 (84.3) 93.0 (90.5) 13.4 (15.0) 10.0 (10.9)
bowl 42.1 (30.9) 69.4 (55.0) 76.4 (63.6) 22.6 (29.5) 13.2 (19.0)
bus 53.0 (46.4) 79.5 (74.5) 84.4 (80.4) 18.2 (21.1) 10.7 (12.0)
cabinet 55.7 (56.3) 79.5 (79.7) 84.1 (84.1) 18.2 (18.2) 10.3 (10.2)
camera 35.4 (34.9) 61.5 (59.6) 69.7 (67.6) 26.4 (27.7) 16.1 (16.7)
can 64.8 (53.9) 90.6 (81.7) 93.6 (86.6) 12.6 (16.9) 9.1 (10.6)
cap 49.5 (34.1) 79.0 (62.7) 83.9 (70.9) 18.9 (26.3) 11.3 (16.0)
car 33.7 (25.7) 63.1 (51.1) 72.6 (61.2) 24.4 (30.7) 16.2 (21.8)
cellular telephone 50.8 (50.3) 78.6 (78.1) 84.8 (84.2) 17.8 (18.1) 11.1 (11.2)
chair 35.1 (33.1) 60.7 (57.7) 68.3 (65.4) 27.6 (29.2) 16.4 (17.6)
clock 41.7 (33.5) 67.3 (57.9) 73.9 (64.9) 24.2 (29.6) 13.5 (17.4)
computer keyboard 39.6 (31.5) 71.1 (59.8) 80.0 (69.2) 20.5 (26.7) 13.8 (17.5)
dishwasher 66.9 (64.0) 89.2 (88.2) 91.9 (91.1) 13.4 (14.2) 9.0 (9.3)
display 38.6 (29.3) 67.1 (52.8) 75.1 (60.7) 23.3 (31.5) 14.3 (20.4)
earphone 28.1 (22.4) 53.1 (43.8) 62.8 (53.7) 30.1 (35.0) 20.6 (26.9)
faucet 31.3 (29.5) 58.2 (55.7) 68.2 (65.7) 26.8 (28.3) 18.2 (19.3)
file 59.9 (55.5) 83.1 (81.0) 86.4 (84.9) 16.8 (18.1) 9.7 (10.3)
guitar 38.2 (27.6) 64.6 (48.6) 72.4 (56.6) 24.4 (33.5) 15.0 (23.7)
helmet 36.3 (24.2) 68.6 (50.6) 78.4 (61.3) 21.5 (30.7) 14.9 (22.2)
jar 43.0 (42.7) 71.0 (70.7) 78.0 (77.7) 21.6 (21.7) 12.9 (13.0)
knife 32.9 (28.4) 56.2 (49.8) 65.3 (58.7) 28.2 (31.6) 18.6 (22.7)
lamp 38.3 (36.5) 65.9 (62.6) 73.6 (70.7) 24.1 (25.6) 14.6 (15.5)
laptop 46.2 (31.8) 75.9 (56.3) 82.0 (63.4) 20.1 (30.5) 12.1 (18.4)
loudspeaker 49.7 (47.0) 73.6 (71.9) 79.0 (77.8) 20.9 (22.0) 11.3 (12.0)
mailbox 42.4 (39.4) 68.3 (66.0) 76.0 (74.2) 22.5 (23.7) 13.3 (14.3)
microphone 44.6 (41.3) 74.2 (70.4) 81.4 (78.1) 20.1 (22.0) 12.5 (13.5)
microwave 65.4 (59.4) 87.9 (84.6) 90.8 (88.2) 14.2 (16.3) 9.0 (9.8)
motorcycle 17.9 (16.9) 37.7 (35.8) 48.0 (46.1) 37.4 (38.4) 31.7 (33.3)
mug 54.3 (49.7) 80.8 (78.5) 84.9 (83.5) 18.1 (19.2) 10.5 (11.3)
piano 40.2 (35.7) 65.9 (60.9) 72.8 (68.2) 25.2 (27.9) 14.0 (16.1)
pillow 33.4 (23.4) 66.7 (50.0) 77.3 (60.7) 22.3 (31.1) 15.8 (22.5)
pistol 30.9 (27.2) 57.9 (53.3) 67.7 (63.7) 27.1 (29.5) 18.3 (20.6)
pot 35.5 (33.8) 59.4 (58.2) 66.7 (65.7) 28.2 (28.8) 16.5 (17.3)
printer 46.0 (42.1) 72.1 (68.5) 77.8 (74.5) 22.2 (24.4) 12.2 (13.2)
remote control 38.0 (33.3) 65.3 (60.2) 73.8 (69.7) 23.9 (26.1) 15.0 (17.3)
rifle 28.5 (27.1) 53.5 (51.3) 63.3 (61.0) 29.5 (30.6) 20.3 (21.7)
rocket 28.7 (26.6) 54.7 (50.8) 64.7 (60.4) 28.6 (31.0) 19.8 (22.0)
skateboard 45.8 (28.7) 75.9 (54.0) 82.3 (62.1) 19.9 (31.0) 12.1 (20.0)
sofa 37.6 (36.5) 62.2 (60.0) 68.7 (66.3) 27.7 (29.2) 15.0 (15.8)
stove 53.5 (51.4) 78.7 (77.4) 83.9 (82.7) 18.3 (19.2) 10.6 (11.0)
table 53.2 (46.4) 76.7 (72.0) 81.1 (77.1) 19.9 (22.8) 10.6 (12.1)
telephone 50.6 (50.5) 78.7 (78.9) 85.0 (85.4) 17.8 (17.7) 11.1 (11.1)
tower 39.8 (39.2) 65.8 (63.9) 73.0 (71.2) 24.5 (25.3) 14.1 (14.5)
train 34.5 (31.2) 60.1 (56.4) 68.3 (65.0) 27.2 (29.1) 16.6 (18.5)
vessel 26.4 (23.7) 50.0 (45.1) 59.0 (53.7) 32.3 (35.3) 22.5 (26.6)
washer 63.4 (65.0) 86.3 (87.0) 89.7 (90.2) 14.9 (14.5) 9.3 (9.1)

Table 4: Surface normal estimation performance for all classes under the Vd view sampling. The numbers outside the
parenthesis denote the ‘Learned’ setting and the evaluation in the ‘Induced’ setting is reported in the parenthesis. Higher is
better for the first three percent of ‘good’ pixels metrics and lower is better for last two three error metrics.
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